Competitions

CAT Prep

Upskill

Placements

MBA Co'26

RTI Response

Rankings

Score Vs. %ile

Salaries

Campus Tour

Management in Big Data Projects

May 27, 2015 | 4 minutes |

Join InsideIIM GOLD

Webinars & Workshops

Compare B-Schools

Free CAT Course

Take Free Mock Tests

Upskill With AltUni

CAT Study Planner

Final 19 Days to CAT 2024 Test-26

Participants: 118

Final 20 Days to CAT 2024 Test-26

Participants: 174

Final 21 Days to CAT 2024 Test-25

Participants: 144

Final 22 Days to CAT 2024 Test-24

Participants: 164

Final 23 Days to CAT 2024 Test-23

Participants: 102

Final 24 Days to CAT 2024 Test-22

Participants: 154

Final 25 Days to CAT 2024 Test-21

Participants: 144

Final 26 Days to CAT 2024 Test-20

Participants: 193

Final 27 Days to CAT 2024 Test-19

Participants: 170

Final 28 Days to CAT 2024 Test-18

Participants: 168

Final 29 Days to CAT 2024 Test-17

Participants: 175

Final 30 Days to CAT 2024 Test-16

Participants: 193

Final 31 Days to CAT 2024 Test-15

Participants: 183

Final 32 Days to CAT 2024 Test-14

Participants: 190

Final 33 Days to CAT 2024 Test-13

Participants: 191

Final 34 Days to CAT 2024 Test-12

Participants: 225

CAT 2017 VARC SLOT- 2

Participants: 310

CAT 2017 DILR SLOT- 2

Participants: 153

CAT 2017 VARC SLOT- 1

Participants: 296

CAT 2017 DILR SLOT- 1

Participants: 105

CAT 2017 QUANT SLOT 1

Participants: 149

CAT 2017 QUANT SLOT 2

Participants: 69

CAT 2018 QUANT SLOT 2

Participants: 65

CAT 2018 QUANT SLOT 1

Participants: 106

CAT 2018 DILR SLOT- 2

Participants: 56

CAT 2018 DILR SLOT- 1

Participants: 81

CAT 2018 VARC SLOT- 2

Participants: 202

CAT 2018 VARC SLOT- 1

Participants: 294

Final 35 Days to CAT 2024 Test-11

Participants: 154

Final 36 Days to CAT 2024 Test-10

Participants: 129

Introduction

Big data projects are built on huge amount of complex data and their real time analysis. Such complexities can make the projects run a high risk of not shaping up to client’s requirements or exceeding target dates. They are more exploratory or research oriented in nature. As such, it becomes imperative for the budding project managers to understand some intricacies involved in shaping up a project in Big Data. Points of importance in Big Data Projects 1. Information security and privacy Information security should be one of the topmost priorities for a risk management team in a big data project. Since the infrastructure for a big data project is cloud based and is usually provided by a third party vendor as such checking the security contracts and breach resolution is very critical for a seamless project delivery. To avoid privacy breach with the client’s confidential data the solution providers working in a big data project need to create a Privacy Impact Assessment Program. Such a program ensures privacy by design and has a mechanism of proactive monitoring and pre-prepared contingency plans. This program will ensure that privacy would not come in just as an added feature of a risk management plan but would be evolved as a core functionality delivery. On top of its effectiveness, such a program needs to make certain that privacy policies for the users are transparent and facilitates user-friendly options. 2. Project Manager’s requirement for high technical skill set A typical project management role for a big data project has a good amount of dependencies on technical aspects- data architecture, technical metrics and KPIs, developing platforms as Hadoop and NoSQL, measuring a project’s maturity to take up a big data based solution etc. Hence, the technology adoption skills of a project manager will define the quantum of value addition, s/he brings in that project. 3. Risk Management Big data projects need to have a very agile way of handling the processes. Due to the high amount of uncertainties involved it becomes a challenge to continuously map the expectations and deliveries. Some of the main apprehensions while leading a big data based project can revolve around- i. The possibility that the data provided may fall short of providing analytical results in solving the required business problem. The estimates and plans done can only give you an approximate idea and are completely dependent on the behavior of the data; eventually these can be quite off target. ii. Analytical results based on a large amount of data always carry the risk of the results being overly data dependent and not applicable across business scenarios. Significant changes in data points can trigger an altogether different or counter intuitive result. iii. With the involvement of several stakeholders in a big data based project viz. solution vendor team, infrastructure provider, client etc. understanding the intricacies of data governance and data management policies can become a challenge. 4. Process Methodologies For a big data project, the delivery methodology is mostly incremental and iterative. A lot of effort goes into the planning stage because of the high possibilities of failure during the proof of concept and proof of value stage. The process governing a big data project delivery needs to be flexible so as to accommodate more changes with the ever changing requirements of the clients. Extensive use of roadmaps, high level work breakdown schedules and milestones for progress measurement characterize such a project. 5. Big Data Analytics and Knowledge Management A positive aspect of the huge amount of data in big data analysis is that it can be used to form a host of knowledge objects for future references and understanding. Integrating the analytical results and mapping them with the characteristics of the data set can help the solution providers to empower their clients with predictive models for designing their business roadmaps. Thus we observe that a big data project is accompanied with several unique challenges and complexities. This makes it imperative for a project manager to cultivate specific competencies championing the delivery mechanism and thereby providing rapid deployment and cost effective business solutions. References Content Picture