21 Data Analytics Interview Questions You Should Prepare For

Sep 22, 2022 | 8 minutes |
Job Interviews! We can assure you that they’re not everyone’s cup of tea and most of us were thrown off guard either by a tough question or by unawareness of the topic. How do you ensure you are ready for the storm? What is your preparation process? If you are looking forward to making a breakthrough in the career of Data Analytics then these questions are relevant to you as well. A career in Data Analytics is a promising one with an extremely competitive salary. There has never been a better time to learn Data Analytics. WATPI S05 - In-Article Top Ad Let’s say you are applying for a job opening for a Data Analyst or any other functional role that requires the skill set of Data Analytics, you’ll want to:

Master Data Analytics & Visualization Skills From Industry Experts & Work On A Live Project With Voiceback Analytics With AltUni’s Advanced Data Analytics Program!

Here are a few frequently asked technical questions in a Data Analytics interview!

1. What is the Data Analysis process? Data analysis is the act of gathering, cleaning, transforming, and analyzing data in order to provide insights that can be used to solve problems or enhance business results.             The common process of Data Analysis with few key steps: 2. Define the difference between data profiling and data mining.

Data Profiling

Data Mining

It is analyzing & manipulating data from an existing source. It is analyzing the gathered information via interviews, surveys, etc.
The purpose is to provide accurate, consistent, & error-free data. The purpose is to build machine learning techniques for real-time problems.
The application involves targeted advertising, image recognition, fraud detection, etc. The application involves credit analysis, business intelligence, customer behavior, etc.
3. Explain Data Validation & its methods. Data validation is a process of ensuring the accuracy and quality of the source data before using or processing it. You risk making decisions based on incomplete data that isn't truly representative of the current situation if you don't validate your data. It is used in Data Warehousing & ETL process.  Few types of Data Validation checks or rules: 4. What are the characteristics of a good data model? An abstract model of ordered data items and their relationships based on actual objects is referred to as a data model. Few characteristics or criteria of a good data model: 5. Define Outlier. An outlier is a data point that deviates significantly from the dataset's average features. There are two methods to treat an outlier: Box plot & Standard Deviation method. 6. What is Data Wrangling? Data wrangling refers to a number of steps to formulate to transform unstructured data into formats that are easier to work with. The precise approaches vary from project to project depending on the data you're using and the objective you're trying to achieve. 7. What Is the Difference Between Variance, Covariance, and Correlation? Variance, Covariance, and Correlation are statistical measures for determining the connection between data points in a data set. Variance: It is a measurement of how much each value in a dataset deviates from the mean. The dataset is more evenly distributed the larger the variance. Covariance: It measures how two randomly generated variables in a dataset will change collectively. Two variables travel together if their covariance is positive; if not, they move in opposite directions.  Correlation: This quantifies the magnitude and direction. The correlation coefficient will tell you how much the two variables will move, while the covariance will tell you whether they move at all.

Learn Tools Like MySQL, Power BI & Tableau, Work On 3 Live & Capstone Projects & Master The Most Sought-After Skill By Registering For AltUni’s Advanced Data Analytics Program Now!

Along with these technical questions, you should be prepared to answer a few personal & situational questions.

Common Personal Data Analytics Questions:

  1. Brief us on your professional background or experience in data analytics.
  2. What data analytics certifications or training have you received?
  3. What is the largest set of data you have ever worked with?
  4. How do you handle pressure and stress?
  5. What are your long-term data analysis goals?
  6. What would you bring to our company & why would it be a good decision to hire you?
  7. What are your greatest strengths & weakness as a data professional?

Common Situational Data Analytics Questions:

  1. How would you handle a situation where you receive a data set that you believe has suspicious or missing data?
  2. What is the biggest challenge you’ve encountered in data analytics and how did you address it?
  3. Please provide an example of a situation in which you demonstrated leadership capabilities on the job.
  4. Tell me about the most recent data analytics project you worked on and the core steps you took to complete it.
  5. Describe a time when you had to persuade others. How did you get buy-in?
  6. How would you manage "messy" data?
  7. If you've ever had to collaborate with stakeholders who have a weak technical foundation and knowledge of databases and data. What approach would you take?
Now that you are familiar with the kind of questions that are frequently asked in the Data Analytics job interviews, let’s also look at how you can get those interviews and crack them. For you to acquire Data Analytics skills, we have a comprehensive program that you can take up while you work/study! Introducing Cohort 3 of AltUni’s Advanced Data Analytics Program, rated 4.44 out of 5, where you get to learn from top industry experts like Havish Madhvapaty who has featured in the Innovators 40 Under 40 Professionals list!

Check Out The Program Details, Watch The Demo Session & Register Now!

How Does Our Program Help You With Mastering Data Analytics Skills?

What's More?

That’s not all!

Acquire In-Demand Data Analytics Skills & Get Industry Exposure With Live Projects & Case Studies In Various Domains; All In AltUni’s Advanced Data Analytics Program!